Image manifold revealing for breast lesion segmentation in DCE-MRI.

نویسندگان

  • Liang Hu
  • Zhaoning Cheng
  • Manning Wang
  • Zhijian Song
چکیده

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is widely used for breast lesion differentiation. Manual segmentation in DCE-MRI is difficult and open to viewer interpretation. In this paper, an automatic segmentation method based on image manifold revealing was introduced to overcome the problems of the currently used method. First, high dimensional datasets were constructed from a dynamic image series. Next, an embedded image manifold was revealed in the feature image by nonlinear dimensionality reduction technique. In the last stage, k-means clustering was performed to obtain final segmentation results. The proposed method was applied in actual clinical cases and compared with the gold standard. Statistical analysis showed that the proposed method achieved an acceptable accuracy, sensitivity, and specificity rates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI

Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...

متن کامل

Breast cancer detection and diagnosis in dynamic contrast-enhanced magnetic resonance imaging

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the breast is a medical imaging tool used to detect and diagnose breast disease. A DCE-MR image is a series of three-dimensional (3D) breast MRI scans. It is acquired to form a 4D image (3D spatial + time), before and after the injection of paramagnetic contrast agents. DCE-MRI allows the analysis of the intensity variation of ma...

متن کامل

Spectral embedding based active contour (SEAC) for lesion segmentation on breast dynamic contrast enhanced magnetic resonance imaging.

PURPOSE Segmentation of breast lesions on dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) is the first step in lesion diagnosis in a computer-aided diagnosis framework. Because manual segmentation of such lesions is both time consuming and highly susceptible to human error and issues of reproducibility, an automated lesion segmentation method is highly desirable. Traditional au...

متن کامل

Quantitative Comparison of Artificial Honey Bee Colony Clustering and Enhanced SOM based K-means Clustering Algorithms for Extraction of ROI from Breast DCE-MR Images

This paper introduces a comparison of two popular clustering algorithms for breast DCE-MRI segmentation purpose. Magnetic resonance imaging (MRI) is an advanced medical imaging technique providing rich information about the human soft tissue anatomy. The goal of breast magnetic resonance image segmentation is to accurately identify the principal mass or lesion structures in these image volumes....

متن کامل

A Comprehensive Segmentation, Registration, and Cancer Detection Scheme on 3 Tesla In VivoProstate DCE-MRI

Recently, high resolution 3 Tesla (T) Dynamic Contrast-Enhanced MRI (DCE-MRI) of the prostate has emerged as a promising modality for detecting prostate cancer (CaP). Computer-aided diagnosis (CAD) schemes for DCE-MRI data have thus far been primarily developed for breast cancer and typically involve model fitting of dynamic intensity changes as a function of contrast agent uptake by the lesion...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bio-medical materials and engineering

دوره 26 Suppl 1  شماره 

صفحات  -

تاریخ انتشار 2015